Shutterthyme's Blog

April 12, 2014

Spring Break in Washington, D.C.

Filed under: Photo Blog — Mia @ 2:37 pm

view of the Lincoln Memeorial from the base of the steps

Washington Monument and the reflection pool

Tomb of the Unknown Soldier

Funeral procession in the distance with horses, wagon, flagged-draped coffin, and soldiers

Lincoln Memorial photo of Lincoln seated beneath one of his quotes

View of Washington Monument from the Lincoln Memorial columns

Arlington National Cemetery memorial amphitheater

December 10, 2013

Re-purposed Hard Drive Platters and Digital Printing

Filed under: Digital Fabrication — Mia @ 5:20 pm

Hard drive platters are stacked with acrylic spacers on an acrylic tube to create a lamp. The white base was printed on a digital printer.

OpenSCAD screen shot of my completed project.

We explored digital printing and new software programs for this project. After experimenting with Tinkercad, SketchUp, Autodesk 123D Catch, and MeshMixer, I dug my heels in and learned OpenSCAD, an open source program for creating 3D CAD objects. I included a screen shot of an OpenSCAD coding window. The two-part lamp base was designed in Project ShapeShifter and then imported into OpenSCAD for integration into the final project. Project Shapeshifter is a free technology preview from Autodesk Labs created to help designers model complex 3D printable geometries. I printed the solid base with an Ultimaker 3D printer. The upper portion of the lamp base was printed by the 3D printing service, Shapeways. The 3D printer software was a challenge. Designs were adjusted online and then sliced into layers that the printer could extrude. It was exciting to see my design as part of a working lamp and fun to repurpose discarded hard drive platters. A remote control allows color, brightness, and light show changes from about 25 meters.

Acrylic Window Frame

Filed under: Digital Fabrication — Mia @ 4:06 pm

An acrylic frame resembles a window with blue acrylic rods acting as blinds.

A lamp, photo frame, and stuffed rabbit sit on top of an Ikea computer cabinet.

Mary Van Cline‘s 1983 The Enigma of Time inspired this photo frame. Van Cline used photosensitive glass and glass rods where I incorporated a laser-printed transparency and acrylic rods. Capturing the venetian blinds effect with background light affecting the transparent image was my intent. Geometric design includes the Golden Ratio (Da Vinci’s divine proportion). The photo inside the simulated window was taken in Oregon—just south of Seaside. During critique, I placed the frame, a lamp made from hard drive platters, a stuffed rabbit, and a onesie that my granddaughter outgrew on top of an Ikea computer cabinet. I was excited to discover the extrude feature of Adobe Illustrator when creating the project sketch.

The critique photo was taken by our instructor, Brian Evans.

Working Gears

Filed under: Digital Fabrication — Mia @ 3:58 pm



A white frame has fourteen acrylic gears in it. A motor on the back turns the gears.

The back of the gears frame has a clear acrylic cover that reveals the motor and right angle gear box.

This closeup image of the gears shows the burgundy, green, dark blue and light blue transparent acrylic colors.

Laser cutting was the emphasis of this Digital Fabrication project. Building a set of 24-pitch gears in Adobe Illustrator was a time-consuming challenge. I designed a back frame cover to reveal the inner workings of the motor, right angle gear box, and power connection. The 1/16″ laser-cut latches fit perfectly to secure the project in the shadow box frame. I’ve made several trips to Plasticare this semester!

The close-up image was captured during class critique by our instructor, Brian Evans.

Deconstructed Face

Filed under: Spatial Media I — Mia @ 3:20 pm



layers of acrylic are mounted to display the inner workings of an LED project.

four layers are mounted on an acrylic base: arduino, acrylic grid, vinyl mask, and two-way mirror. The front of the frame has a molded acrylic face in it.

An Arduino micro-controller, breadboard,  strip LEDs,  a barrel plug power adapter, and Ping sensor connections are mounted on a clear acrylic panel.

This Spatial Media I project reveals the inner workings of previous designs and was inspired by Damián Ortega‘s disassembled 35mm Olympus camera. Olympus, 2009s twenty-six plastic sheets display camera parts in a horizontal line. For my project, a half-inch acrylic plate supports the layers: thermo-formed acrylic face, two-way acrylic mirror, vinyl mask that allows limited LED light to pass, laser-cut acrylic grid (in the shape of a brain) that traps light, and an electronics panel. The micro-controller, breadboard, neopixel LEDs, Ping))) connections, and power adapter fit on a clear acrylic sheet. Laser-cut holes provide a place to mount the Arduino and pass a barrel plug.

Individually addressable LEDS are controlled by an Arduino Uno micro-controller. Twenty-eight LEDs flash brighter and faster as viewers approach Ping))), a sonar proximity detector. The red, green, and blue color channels are programmed to fire randomly (0–254) and simulate brain neurons. Full-power flashes that are five milliseconds apart indicate agitation if the frame’s “personal space” is violated.

November 3, 2013

Infinity Mirror with an Acrylic Face

Filed under: Spatial Media I — Mia @ 3:39 am

Four frames are lit with LEDS and have mirrors that make one row of lights look like thirty rows

four white frames with an outer border infinity mirror

A pattern of four faded lights moves clockwise around the perimeter of the white shadowbox frames. The faded lights are subtle and are on the lower right side in the photograph. The acrylic face pushes three inches beyond the front of the frame, as if trying to escape the past. The single row of LEDs looks like thirty rows because the 144 lights are sandwiched between two-way mirrors on the front and standard mirrors toward the wall. The Arduino Mega micro-controller is mounted in an acrylic iPod box on the wall.

Thanks to Bryan Beard, the acrylic face was thermo-formed in Industrial Design’s plastics lab. 3/16″ acrylic was cut, mounted, heated, and pulled over a vacuum frame. The ceramic bisque mask was lifted into the drooping hot acrylic as a vacuum formed the clear acrylic around the mask. Drilled 1/16″ holes allowed the vacuum to pull the hot acrylic sheet against the mask and its support board.

Our Spatial Media instructor, Brian Evans, took the far left photo during class critique.

July 16, 2013

Max MSP 6 Groove Object

Filed under: Electronics and Experimental Systems — Mia @ 2:02 am



Max MSP 6 groove tutorials by Joel Rich inspired this patcher (program).

July 1, 2013


Filed under: Electronics and Experimental Systems — Mia @ 3:09 pm

Parallax makes an ultrasonic distance sensor that interfaces with Arduino’s micro-controllers. This is a set-up of PING))), Arduino UNO 3, Arduino’s motor shield, a voltage regulator, and two 12-volt brushless fans. The fans rev up when PING))) detects anyone less than a foot from the sensor. Learning to use millis instead of delays in the programming code allows more frequent updates to the RGB LCD (red-green-blue liquid crystal display). I mounted the LCD on a backpack that has user interface buttons for color control. The next step is to create blinking eyelids that blink faster as someone approaches.

ultrasonic sensor is connected to an arduino, an RGB LCD, an Arduino motor shield, and two brushless fans

ultrasonic sensor is connected to an arduino, an RGB LCD, an Arduino motor shield, and two brushless fans

Arduino Code

May 16, 2013

Eye Robot

Filed under: Electronics and Experimental Systems — Mia @ 7:04 pm

Mac G5 computer parts that processed images, videos, and music programs since 2004 are now components of an Electronics and Experimental Systems assignment, “Into the Uncanny Valley.” This is information from our assignment:

“The uncanny valley draws on the philosophy of the uncanny that was first made popular by Sigmund Freud in his 1919 essay Das Unheimliche, where he proposes that the uncanny is not something wholly uknown or alien but rather is something that is strangely familiar.

In electromechanically driven kinetic art, there is often a tendency to react to the work much in the way that one would react to the uncanny—whether because of how it moves, in the motor and mechanism chosen, or why it moves, in the data-driven, sensor-based interactivity, or other programmatic behaviors.”

I plan to build on this project for my Senior Thesis and May, 2014 gallery installation. I would like to add a vertical component to the eye movement and a pair of eyelids. Each portion of the project worked well (servo and linkage for horizontal movement, servo and linkage for vertical movement, and solenoid to blink eyelids) but combining the hardware and C++ code was problematic. Over the summer, I’m learning C++ and working on a way to fit eyelids over moving clevis connections.


May 13, 2013

Mac G5 Transformation

Filed under: Electronics and Experimental Systems — Mia @ 1:04 am

G5 computer with the cover off

Mac G5 computer logic board that has been removed from the case

empty G5 computer case

empty computer case

computer parts on a table

a table of G5 computer parts

Tech-Optics animatronic dark blue eyes

filling the computer case with animatronic eyes

two pairs of animatronic eyes in a G5 case

Older Posts »

The Silver is the New Black Theme. Blog at


Get every new post delivered to your Inbox.